|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||||
java.lang.Objectweka.classifiers.trees.j48.ClassifierSplitModel
weka.classifiers.trees.j48.BinC45Split
Class implementing a binary C4.5-like split on an attribute.
| Constructor Summary | |
BinC45Split(int attIndex,
int minNoObj,
double sumOfWeights)
Initializes the split model. |
|
| Method Summary | |
int |
attIndex()
Returns index of attribute for which split was generated. |
void |
buildClassifier(Instances trainInstances)
Creates a C4.5-type split on the given data. |
double |
classProb(int classIndex,
Instance instance,
int theSubset)
Gets class probability for instance. |
double |
gainRatio()
Returns (C4.5-type) gain ratio for the generated split. |
double |
infoGain()
Returns (C4.5-type) information gain for the generated split. |
java.lang.String |
leftSide(Instances data)
Prints left side of condition.. |
void |
resetDistribution(Instances data)
Sets distribution associated with model. |
java.lang.String |
rightSide(int index,
Instances data)
Prints the condition satisfied by instances in a subset. |
void |
setSplitPoint(Instances allInstances)
Sets split point to greatest value in given data smaller or equal to old split point. |
java.lang.String |
sourceExpression(int index,
Instances data)
Returns a string containing java source code equivalent to the test made at this node. |
double[] |
weights(Instance instance)
Returns weights if instance is assigned to more than one subset. |
int |
whichSubset(Instance instance)
Returns index of subset instance is assigned to. |
| Methods inherited from class weka.classifiers.trees.j48.ClassifierSplitModel |
checkModel, classifyInstance, classProbLaplace, clone, codingCost, distribution, dumpLabel, dumpModel, numSubsets, sourceClass, split |
| Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
public BinC45Split(int attIndex,
int minNoObj,
double sumOfWeights)
| Method Detail |
public void buildClassifier(Instances trainInstances)
throws java.lang.Exception
buildClassifier in class ClassifierSplitModeljava.lang.Exception - if something goes wrongpublic final int attIndex()
public final double gainRatio()
public final double classProb(int classIndex,
Instance instance,
int theSubset)
throws java.lang.Exception
classProb in class ClassifierSplitModeljava.lang.Exception - if something goes wrongpublic final double infoGain()
public final java.lang.String leftSide(Instances data)
leftSide in class ClassifierSplitModeldata - the data.
public final java.lang.String rightSide(int index,
Instances data)
rightSide in class ClassifierSplitModelindex - of subset and training set.
public final java.lang.String sourceExpression(int index,
Instances data)
sourceExpression in class ClassifierSplitModelindex - index of the nominal value testeddata - the data containing instance structure info
public final void setSplitPoint(Instances allInstances)
public void resetDistribution(Instances data)
throws java.lang.Exception
resetDistribution in class ClassifierSplitModeljava.lang.Exceptionpublic final double[] weights(Instance instance)
weights in class ClassifierSplitModel
public final int whichSubset(Instance instance)
throws java.lang.Exception
whichSubset in class ClassifierSplitModeljava.lang.Exception - if something goes wrong
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||||