|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.classifiers.Classifier
weka.classifiers.functions.RBFNetwork
Class that implements a normalized Gaussian radial basis function network. It uses the k-means clustering algorithm to provide the basis functions and learns either a logistic regression (discrete class problems) or linear regression (numeric class problems) on top of that. Symmetric multivariate Gaussians are fit to the data from each cluster. If the class is nominal it uses the given number of clusters per class. It standardizes all numeric attributes to zero mean and unit variance. Valid options are:
-B num
Set the number of clusters (basis functions) to use.
-R ridge
Set the ridge parameter for the logistic regression or linear regression.
-M num
Set the maximum number of iterations for logistic regression.
(default -1, until convergence)
-S seed
Set the random seed used by K-means when generating clusters.
(default 1).
-W num
Set the minimum standard deviation for the clusters.
(default 0.1).
Constructor Summary | |
RBFNetwork()
|
Method Summary | |
void |
buildClassifier(Instances instances)
Builds the classifier |
java.lang.String |
clusteringSeedTipText()
Returns the tip text for this property |
double[] |
distributionForInstance(Instance instance)
Computes the distribution for a given instance |
int |
getClusteringSeed()
Get the random seed used by K-means. |
int |
getMaxIts()
Get the value of MaxIts. |
double |
getMinStdDev()
Get the MinStdDev value. |
int |
getNumClusters()
Return the number of clusters to generate. |
java.lang.String[] |
getOptions()
Gets the current settings of the classifier. |
double |
getRidge()
Gets the ridge value. |
java.lang.String |
globalInfo()
Returns a string describing this classifier |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options |
static void |
main(java.lang.String[] argv)
Main method for testing this class. |
java.lang.String |
maxItsTipText()
Returns the tip text for this property |
java.lang.String |
minStdDevTipText()
Returns the tip text for this property |
java.lang.String |
numClustersTipText()
Returns the tip text for this property |
java.lang.String |
ridgeTipText()
Returns the tip text for this property |
void |
setClusteringSeed(int seed)
Set the random seed to be passed on to K-means. |
void |
setMaxIts(int newMaxIts)
Set the value of MaxIts. |
void |
setMinStdDev(double newMinStdDev)
Set the MinStdDev value. |
void |
setNumClusters(int numClusters)
Set the number of clusters for K-means to generate. |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setRidge(double ridge)
Sets the ridge value for logistic or linear regression. |
java.lang.String |
toString()
Returns a description of this classifier as a String |
Methods inherited from class weka.classifiers.Classifier |
classifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, setDebug |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
public RBFNetwork()
Method Detail |
public java.lang.String globalInfo()
public void buildClassifier(Instances instances) throws java.lang.Exception
buildClassifier
in class Classifier
instances
- the training data
java.lang.Exception
- if the classifier could not be built successfullypublic double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance
in class Classifier
instance
- the instance for which distribution is computed
java.lang.Exception
- if the distribution can't be computed successfullypublic java.lang.String toString()
public java.lang.String maxItsTipText()
public int getMaxIts()
public void setMaxIts(int newMaxIts)
newMaxIts
- Value to assign to MaxIts.public java.lang.String ridgeTipText()
public void setRidge(double ridge)
ridge
- the ridgepublic double getRidge()
public java.lang.String numClustersTipText()
public void setNumClusters(int numClusters)
numClusters
- the number of clusters to generate.public int getNumClusters()
public java.lang.String clusteringSeedTipText()
public void setClusteringSeed(int seed)
seed
- a seed value.public int getClusteringSeed()
public java.lang.String minStdDevTipText()
public double getMinStdDev()
public void setMinStdDev(double newMinStdDev)
newMinStdDev
- The new MinStdDev value.public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class Classifier
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-B num
Set the number of clusters (basis functions) to use.
-R ridge
Set the ridge parameter for the logistic regression or linear regression.
-M num
Set the maximum number of iterations for logistic regression.
(default -1, until convergence)
-S seed
Set the random seed used by K-means when generating clusters.
(default 1).
-W num
Set the minimum standard deviation for the clusters.
(default 0.1).
setOptions
in interface OptionHandler
setOptions
in class Classifier
options
- the list of options as an array of strings
java.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class Classifier
public static void main(java.lang.String[] argv)
argv
- should contain the command line arguments to the
scheme (see Evaluation)
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |