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INTRODUCTION

CD8 T cells play a key role in tumor immunosurveillance and clearing

of intracellular infectious agents, and a subset of them known as cytotoxic

T lymphocytes (CTLs) are capable of directly killing infected and tumor

cells.1 CTLs discriminate between normal and damaged cells using their

T cell receptor (TCR) to monitor the peptides presented by major histo-

compatibility class I (MHCI) molecules on the cell surface. T cells recog-

nizing self-peptides are eliminated during the process of thymic selection,

and, thereby, T cell immune responses are triggered by the recognition of

MHC molecules incorporating foreign or antigenic peptides (T cell epi-

topes).2 T cell epitopes result from the degradation of proteins through

pathways that determine the repertoire of peptides that are available for

binding to MHC and recognition by T cells. The dominant pathway for

class I antigen processing is reviewed next.

MHCI molecules preferably bind peptides nine residues long that gener-

ally originate from endogenous proteins that are degraded in the cytosol

of the cell by the proteolytic activity of the proteasome.3,4 Peptide frag-

ments cleaved by proteasomes are shuttled to the lumen of the endoplas-

mic reticulum (ER) by the transporter associated with antigen processing

(TAP), where they can bind to newly assembling MHCI molecules.5,6

Before MHCI binding, peptides can also undergo an optional N-terminal

trimming by ER-associated amino peptidases (ERAAP).7 Finally, peptide-

MHCI complexes are exported to the cell surface for presentation to the

CD8 T cells.5,6 There is evidence supporting that these processing steps

limit/shape the peptides that can be presented by MHCI molecules in

vivo,7-9 thus explaining the numerous observations of high affinity MHCI

binding peptides that are unable to elicit CTL responses.10,11 Nonetheless,

peptide transport by TAP represents the single most selective step in T cell

epitope processing.12 In addition, TAP is also important for presentation

of epitopes derived from exogenous antigens.13
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ABSTRACT

The transport of peptides to the endoplas-

mic reticulum by the transporter associ-

ated with antigen processing (TAP) is a

necessary step towards determining CD8 T

cell epitopes. In this work, we have studied

the predictive performance of support vec-

tor machine models trained on single resi-

due positions and residue combinations

drawn from a large dataset consisting of

613 nonamer peptides of known affinity to

TAP. Predictive performance of these TAP

affinity models was evaluated under

10-fold cross-validation experiments and

measured using Pearson’s correlation coef-

ficients (Rp). Our results show that every

peptide position (P1–P9) contributes to

TAP binding (minimum Rp of 0.26 6 0.11

was achieved by a model trained on the P6

residue), although the largest contributions

to binding correspond to the C-terminal

end (Rp 5 0.68 6 0.06) and the P1 (Rp 5
0.51 6 0.09) and P2 (0.57 6 0.08) residues

of the peptide. Training the models on

additional peptide residues generally

improved their predictive performance and

a maximum correlation (Rp 5 0.89 6 0.03)

was achieved by a model trained on the

full-length sequences or a residue selection

consisting of the first 5 N- and last 3 C-

terminal residues of the peptides included

in the training set. A system for predicting

the binding affinity of peptides to TAP

using the methods described here is readily

available for free public use at http://

imed.med.ucm.es/Tools/tapreg/.
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TAP belongs to the ATP-dependent binding cassette

(ABC) transporter superfamily, and it is expressed as a

heterodimer consisting of the TAP1 and TAP2 proteins

subunits.14,15 Both TAP1 and TAP2 proteins encode one

hydrophobic transmembrane domain and one ATP bind-

ing domain. Transport of peptides by TAP proceeds in

two sequential steps, where peptide binding to TAP

occurs first followed by a translocation step consuming

ATP.16-18 Peptide transport rate by TAP is governed by

the initial binding step.19,20 Likewise, TAP preselection

of peptides available for MHCI presentation is also con-

trolled by their affinity to TAP. Selectivity of TAP has

been studied from data generated using assays that deter-

mine peptide binding to TAP or peptide accumulation in

the ER.17,18 TAP preferentially transports peptides with

a length of 8–16 residues,14,21 whereas longer peptides

may be transported but with much lower efficiency.

Besides peptide length preferences, the first three N-ter-

minal residues and the C-terminal end of the peptides

have also been shown to be important for binding to

TAP.12,22 Furthermore, a peptide-binding motif for TAP

has been defined by van Endert et al.,22 which indicates

a TAP preference for hydrophobic aromatic residues at

the C-terminus, hydrophobic residues at position 3 (P3),

and charged and hydrophobic residues at position 2

(P2). On the other end, aromatic or acidic residues at P1

and prolines at P1 and P2 have strong deleterious effects.

A number of methods have also been applied for pre-

dicting and analyzing the binding affinity of peptides to

TAP, such as artificial neural networks,23-25 support vector

machines (SVMs),26,27 and matrices generated using the

Stabilized Matrix Method28 and the additive method.29,30

The majority of these methods were trained on the same

training set of �435 nonamer (9-mer) peptides of known

affinity to TAP made available by Dr. van Endert, and until

now their performance has not been compared in an inde-

pendent testing set. In contrast, here we have used a much

larger training set, encompassing 178 new peptides, to ana-

lyze TAP binding preferences using SVMs. Interestingly,

our results indicate that each peptide residue has a signifi-

cant contribution to TAP binding. Moreover, we have gen-

erated TAP binding affinity models that in cross-validation

experiments achieved a correlation between experimental

and predicted values of 0.89 � 0.03, which is stronger than

that of related methods. Based on these results, we have

implemented a system, TAPREG, for predicting affinity of

peptides to TAP that is available for free public use at

http://imed.med.ucm.es/Tools/tapreg/.

MATERIAL AND METHODS

Peptide datasets

The main dataset used in this study to analyze the

peptide selectivity of TAP consisted of 613 unique

nonamer (9-mer) peptides of known binding affinity

to human TAP relative to the reference peptide RRYNASTEL

(IC50relative). The lower the IC50relative, the stronger the

peptide binds to TAP. This dataset encompasses 435 pep-

tides, kindly provided by Dr. Peter van Endert23

(INSERM U580, Paris Descartes University, Paris,

France)—IC50relative already referenced to RRYNASTEL—

plus 178 peptides parsed from the TAP binding affinity

peptide collection of the Antijen Database,31 kindly pro-

vided by Dr. Darren Flower (The Jenner Institute, Comp-

ton, UK). To combine the peptides into a single dataset,

the TAP binding affinity (IC50) of peptides collected

from the Antigen Database was also referenced to the

peptide RRYNASTEL. For peptides obtained from the

Antigen Database that were identical in sequence but had

different TAP binding affinities, median values were

considered before referencing. This dataset is provided as

Supporting Information in Table 1S. We thank to

Dr. Peter van Endert and Dr. Darren Flower for showing

no inconvenience in that we provided Table 1S as Sup-

porting Information.

Peptide datasets with reduced sequence similarity were

generated from the 613-peptide dataset using the purge

utility of the Gibbs Sampler32 with an exhaustive method

and maximum blosum 62 relatedness scores of 25, 30, 35,

and 37. The resulting datasets had 293, 332, 465, and 530

peptides and are provided as Supporting Information (Ta-

ble 2S, Table 3S, Table 4S, and Table 5S, respectively).

To compare TAP affinity scores predicted by available

methods, we used a set of 723 unique 9-mer CD8 T cell

epitopes obtained from the IMMUNEEPITOPE33 and

EPIMHC34 databases (provided as Supporting Informa-

tion in Table 6S).

Model building and evaluation

Predictive models of TAP affinity were trained and

evaluated under the EXPERIMETER application of the

Waikato Environment for Knowledge Analysis (WEKA)

package.35 WEKA provides a framework for data classifi-

cation, clustering, and feature selection using a large col-

lection of machine-learning algorithms. In this study, we

have selected kernel-based SVMs. Specifically, we used a

radial basis function (RBF) as the kernel in combination

with Alex Smola and Bernhard Scholkopf ’s sequential

minimal optimization algorithm for training SVMs

(SMOreg algorithm in WEKA).36,37 Model refinement

was achieved by varying the C (0.2, 0.4, 0.8, 1, 2, 4, 8,

10) and gamma (0.001, 0.0025, 0.005, 0.01, 0.025, 0.05,

0.1, 0.2, 0.3, 0.4, 0.5) values of the RBF kernel. Predictive

models were generated from distinct training sets, con-

sisting of different residue selections drawn from the

peptide sequences of the training set and encoded using

sparse and blosum representations. In the sparse encod-

ing, each amino acid is coded by the relevant amino acid

symbol, whereas in the blosum encoding, it is repre-

sented by 20 digits corresponding to the relevant amino

C.M. Diez-Rivero et al.
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acid substitution scores given by the BLOSUM62 substi-

tution matrix.38 TAP affinity (IC50relative) values of the

training sets were provided to WEKA as logIC50relative val-

ues. Pearson’s correlation coefficient (Rp) was used to

measure the performance of SVMs to fit the experimental

data. Since SVM models were built and evaluated using

10-fold cross-validation experiments that were repeated

10 times, Rp mean values and standard deviations were

computed from 100 different values. Predicted

peptide affinity scores yielded by the models generated

with WEKA were transformed to IC50 values by consi-

dering an IC50 for the reference peptide RRYNASTEL of

400 nM.

Sequence similarity analyses

Sequence similarity in peptide datasets was analyzed

from pairwise sequence alignments between all peptides

in the dataset. Sequence alignments were obtained using

the Needleman-Wunsch global alignment algorithm

implemented with the needle application that is included

in the EMBOSS package.39 Alignments with peptide

positions shifted were not evaluated (e.g., residues 1–4 of

a peptide aligned with residues 3–7 of another peptide).

Generally, for any given peptide (query) in the dataset,

one could find several peptides that shared sequence sim-

ilarity with it (hits), but the majority of the peptides in

the dataset had no similarity with the query. In this

study, we have computed average sequence similarities in

the peptide datasets in two ways: globally, considering all

possible pairwise comparisons between the peptide

sequences but those with themselves (for a dataset with

N peptides there will be N 3 N-1 comparisons), and

using only the hits.

For a given query peptide in the dataset, the relation-

ship between sequence similarity and binding affinity was

studied by correlating sequence similarity with hits and

differences in binding affinity (logIC50relative) using Spear-

man’s rank correlation (Rs). For instance, let us consider

the peptide PLAKAAAAV (logIC50relative 5 8.370) had the

following hits:

Hit:ALAKAAAAV; Identity:88.9%; Similarity:88.9%;

logIC50relative:3.984; Dif:4.386

Hit:ALAKAAAAL; Identity:77.8%; Similarity:88.9%;

logIC50relative:0.688; Dif:7.682

Hit:AAASAAAAF; Identity:66.7%; Similarity:77.8%;

logIC50relative:20.734; Dif:9.104

Hit:ALAKAAAAF; Identity:55.6%; Similarity:66.7%;

logIC50relative:0.332; Dif:8.038

Hit:GRQKGAGSV; Identity:33.3%; Similarity:44.4%;

logIC50relative:6.215; Dif:2.155

Then, for peptide PLAKAAAAV, an Rs value was com-

puted by correlating the similarity/identity with its pep-

tide hits (88.9, 77.8, 66.7, 55.6, 33.3) and the differences

in logIC50relative values (4.386, 7.682, 9.104, 8.038, 2.155).

Rs values were thus computed for each peptide in the

dataset. Peptides with less than five hits were discarded

from this analysis. These peptide-specific Rs values were

determined considering all peptide hits and only those

with an identity � 50%.

Statistical analyses

To assess whether the correlation achieved by a given

SVM model, i, during training was stronger than that of

another SVM model, j, we used one-sided two-sample

t-test to examine if the differences of the relevant Rp

mean values were significantly above 0 (Ho: Rpi – Rpj 5
0; P � 0.05). To evaluate if Rp values were statistically

significant (H0: Rp 5 0), we computed the statistics given

by Eq. (1), which follows a t-Student distribution with

N – 2 degrees of freedom, and tested subsequently

(P < 0.05).

t ¼ Rpffiffiffiffiffiffiffiffiffiffi
1�Rp2

N�2

q ð1Þ

To evaluate the correlation coefficients obtaining by

comparing the TAP affinity scores predicted by different

methods with each other or with experimental data, we

applied the test for comparing overlapping correlation

coefficients described by Meng et al.,40 as implemented

in the R package compOverlapCorr by Ka-Lon Li (http://

cran.us.r-project.org/web/packages/compOverlapCorr/

index.html). Briefly, Fisher’s Z-transform is applied first

to the relevant correlation coefficients (Ri) using Eq. (2).

Zi ¼ 1

2
ln

1þ Ri

1� Ri

8>: 9>; ð2Þ

Next, a statistics Z, which follows a normal distribu-

tion is computed using Eq. (3), and tested subsequently

(P < 0.05).

Z ¼ ðzi � zjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 3

2ð1� RijÞh

s
ð3Þ

In Eq. (3), Rij is the correlation between the predicted

values by the methods i and j being compared, and h 5
(1 2 f R2)/(1 2 R2), with R2 5 (R2

i 1 R2
j)/2 and f 5

(1 2 Rij)/2(1 2 R2).

Web server implementation

The TAPREG Web server for predicting the binding af-

finity of peptides to TAP was implemented on an Apache

Web server under the Mac OSX operating system. The

TAPREG core consists of a PERL CGI (Common Gate-

way Interface) script that executes the predictions on

Reliable Prediction of PBA to TAP
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user-provided input data and returns the results to the

browser. In addition, the TAPREG web interface uses

JavaScript for handling and verification of input data

before submission.

RESULTS

Quantitative analysis of TAP selectivity
using TAP affinity models

We have approached the study of TAP selectivity using

a large dataset consisting of 613 9-mer peptides (DS613)

of known affinity to TAP (logIC50relative) and SVMs

under a regression schema. SVMs are among the most

widely used methods for solving common data mining

problems in bioinformatics41-43 and were chosen

because of their solid theoretical foundations and proven

generalization ability.44 A key feature of SVMs is the use

of nonlinear functions (kernels) to map the input onto a

higher dimensional space in which an optimal separation

is achieved—in the regression task—using a linear regres-

sion conducted with an e-insensitive loss function for

error minimization.44 In this study, we have selected

RBF kernels (Material and Methods) because in prelimi-

nary training experiments they outperformed the alterna-

tive linear and polynomial kernels (data not shown).

Moreover, we have chosen two peptide sequence repre-

sentations, sparse and blosum (Material and Methods),

as input for SVMs. The evolutionary relationships

between amino acids are taken into consideration with

blosum representations of peptide sequences, which may

enhance the generalization power of the resulting models.

Using WEKA as the framework for model building and

parameter optimization (Material and Methods), we first

evaluated the ability of SVM models to predict TAP

affinity data when trained on individual peptide residues

(P1–P9), judging from the relevant Pearson’s correlation

coefficient (Rp). No differences were observed for models

generated on blosum or sparse encoded sequences. Inter-

estingly, for each peptide residue position, it was possible

to generate SVM models that fitted the data with Rp val-

ues [Fig. 1(A)] that are significant for a linear correlation

(P � 0.05, Material and Methods). The lowest correlation

was obtained with a model trained on the P6 residue (Rp

of 0.26 � 0.11), whereas the largest correlation corre-

sponded to a model trained on the C-terminal end of

the peptide (Rp 5 0.68 � 0.06) followed by the models

trained on the P2 (0.56 � 0.08) and the P1 (Rp 5 0.51

� 0.09) residues of the peptide. Systematic pairwise com-

parisons between the predictive performance of the dif-

ferent position-specific TAP affinity models using one-

side t-tests over the relevant Rp means (Material and

Methods) showed the following peptide residue position

relevance to TAP binding: (P6 5 P5) < (P8 5 P7) �
(P3 5 P4) � P1 � P2 � P9 (C-terminal end).

To evaluate the contribution of several peptide residues

to TAP binding and to improve the correlation results,

SVMs were trained on peptide fragments consisting of

residue combinations drawn from the peptides of the

training set. A total of 20 SVM models were generated

Figure 1
Performance of TAP-affinity prediction models. Models were trained using SVM and their performance was measured using Rp values between

predictions and experimental values determined under 10-fold cross-validation experiments that were repeated 10 times. Thus, Rp mean values and

standard deviations obtained over 100 measures are represented in the figure. Moreover, plotted Rp values were those achieved by SVMs after

parameter optimization. (A) Performance of models trained on individual residues of the 9-mer peptides (1–9) included in the training set. (B)
Performance of models trained on different peptide fragments consisting of the first i N-terminal and the last j C-terminal residues of the peptides

in the training set. Residue selections, iNjC are indicated in the abscissa. Grey bars are for SVM models trained on sparse sequence representations

and black bars for models trained using blosum sequence representations. There was no difference between sparse and blosum trained models on

single peptide residues. Data for making these representations—including the relevant RBF parameters of SVMs—are provided as Supporting

Informtion in Table 7S.

C.M. Diez-Rivero et al.
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and named after the specific peptide residue selection

used for training (model iNjC was generated from a frag-

ment of i 1 j residues, consisting of the first i N-termi-

nal and last j C-terminal residues of the peptides of the

training set). Rp values achieved by these models on the

training set together with those achieved by the models

trained on just the C-terminus and the full-length pep-

tide sequences (9-mers) are shown in Figure 1(B). Few

or no differences were observed between SVMs trained

using different sequence representations: sparse [gray

bars in Fig. 1(B)] and blosum [black bars in Fig. 1(B)].

However, when differences were found, correlations

obtained with the models trained on sparse encoded

sequences were always larger than their blosum counter-

parts and were significantly stronger (P � 0.05) for mod-

els 3N2C, 4N1C, 4N2C, 5N2C, 4N3C, 4N4C, 3N5C,

5N3C, and ALL (trained on the full-length sequences).

Several other general features emerged upon a detailed

analysis of these results. Increasing the number of

selected residues in the training sets (drawn from the

peptides of known affinity to TAP) significantly

improved the correlations achieved by the models

[Fig. 2(A)], which went from an Rp value of 0.68 � 0.06

for a model trained on just the C-terminal end of the

peptides of the training set to an Rp of 0.89 � 0.03 for

the model trained on the full-length sequences (non-

amers). Interestingly, a model trained on just eight resi-

dues (5N3C) achieved the same or better correlation (for

blosum encoding) than models trained on the full-length

peptide sequences [Figs. 1(B) and 2]. Nevertheless, for

each fragment size, the best correlations were obtained

with models trained on fragments encompassing more

N-terminal than C-terminal peptide residue selections

(2N1C, 3N1C, 4N2C, 4N3C, and 5N3C) [Fig. 2(A)], and

these correlations were significantly stronger (P � 0.05)

than those obtained with models with reversed N-termi-

nal and C-terminal residue selections (1N2C, 1N3C,

2N4C, 3N4C, and 3N5C) [Fig. 2(B)]. This observation

supports a larger contribution of the N-terminal half of

the peptide to TAP binding when compared with its

C-terminal half.

Sequence similarity in peptide datasets and
predictive performance of SVM models

To explore the predictive performance of SVM models

in relation to the sequence similarity between testing and

training sets, we generated four peptide datasets of 293,

332, 465, and 530 peptides (DS293, DS332, DS465, DS530,

respectively) by discarding similar sequences from the

original DS613 dataset (Material and Methods). The

global sequence identity in percentage in these datasets

varied from 1 � 6% in the DS293 dataset to 9 � 23% in

the DS530 dataset, whereas in the DS613 dataset it was 10

� 25% (Table I). In the 435-peptide dataset provided by

Peter van Endert (PVE435) the global identity is 5 �
16%. The overall low sequence similarity in the datasets

reflects that the peptides do not belong to a single class

or group related by a given property. On the contrary,

each peptide is linked to a different numeric value (logI-

C50relative). The average number of similarity hits per pep-

tide in the datasets varied from nine peptides in the

DS293 dataset to 110 hits in the DS613 dataset (Table I).

Sequence identity between hits was considerably larger

Figure 2
Analysis of TAP selectivity using TAP-affinity prediction models. SVM-Models trained using sparse sequence representation were selected. (A)

Predictive performance (Rp) of SVM-models with regard to the fragment size used for training (1–9). Only the largest Rp value achieved by a

specific model (indicated in the abscissa) at each fragment size is represented. Statistically significant increments between Rp values of neighboring

models are indicated with a ‘‘*’’ symbol. (B) Predictive performance of the best SVM-models generated upon optimal first i N- and last j C-

terminal residue selections (gray bars) compared with those generated from suboptimal first j N- and last i C-terminal residue selections (black

bars). Statistically significant differences were found between Rp values in all cases (indicated with a ‘‘*’’ symbol). Statistical significance was assessed

using t-tests (Material and Methods).

Reliable Prediction of PBA to TAP
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and ranged from 23% in the DS293 dataset to 59% in the

DS613 dataset (Table I).

Because we train and evaluate the predictive perform-

ance of SMVs using 10-fold cross-validation experiments,

and we repeat these experiments 10 times. we can assume

that sequence similarity between testing and training sets

to be comparable to that in the entire datasets. The

correlation between predictions and experimental

logIC50relative values achieved by SVMs trained and eval-

uated on the datasets of reduced sequence similarity

(DS293, DS332, DS465, DS530, and PVE435) was signifi-

cantly lower (P � 0.05; one-sided t-tests) than that

obtained in the DS613 dataset (Table I). The smallest Rp

was achieved in the DS293 dataset (0.71 � 0.1), and these

values increased significantly (P � 0.05) as the number of

peptides in the datasets (Table I). Thus, DS613Rp > DS530Rp

> DS465Rp > PVE435Rp > DS332Rp > DS293Rp.

These results may apparently suggest that prediction

rates by our SVM models became inflated as sequence

similarity in the datasets increased. However, this is an

unlikely scenario because Rp values were computed in

cross-validation, and the differences in Rp that we

observed were statistically significant. For sequence simi-

larity to be responsible for inflating prediction rates, the

larger the sequence similarity between peptides in the

datasets the closer their binding affinity must be. As a

result, for any given peptide in the dataset one would

expect to find a negative correlation between the similar-

ity to its peptide hits and the differences in binding affin-

ity (Material and Methods for details). However, we have

not found such a negative correlation for the vast major-

ity of the peptides in any of the datasets, as shown in the

boxplot depicted in Figure 3. On the contrary, we have

found these correlations to be shifted toward positives

values; correlation medians in the DS293, DS332, DS465,

DS613, and PVE435 datasets were 0.083, 0.109, 0.102,

0.139, 0.1945, and 0.114, respectively. Notably, the

median of the correlation values in the DS613 dataset is

significantly larger than those of the remaining datasets

(P � 0.05), as judged from Wilcoxon-Mann-Whitney tests.

Virtually identical results were obtained when only hits

with � 50% identity were considered (data not shown).

These results indicate that sequence similarity between

peptides in the datasets does not correlate with proximity

in binding affinity—in fact the opposite would appear to

be the case. Therefore, the prediction rates obtained with

SVMs trained on DS613 dataset are not inflated due to

sequence similarity redundancy. Furthermore, similar

sequences in the DS613 dataset are not redundant and

contribute to the appropriated modeling of TAP binding

affinity by SVMs; hence, the enhanced prediction rates

achieved by models trained on the DS613 dataset.

Comparison of methods for predicting
binding affinity of peptides to TAP

We have compared our SVM model trained on 9-mer

peptide sequences that achieved an Rp 5 0.89 � 0.03

(hereafter TAP613) with four alternative predictive

Table I
Predictive Performance of SVMs Trained on Datasets with Different Sequence Similarity

Dataset Rp Identity (%)a Similarity (%)a Identity (%)b Similarity (%)b Hitsc

DS293 0.71 � 0.1 1 � 6 2 � 10 23 � 11 43 � 11 9 � 7
DS332 0.76 � 0.09 2 � 8 3 � 11 28 � 18 46 � 14 14 � 12
DS465 0.85 � 0.05 7 � 19 8 � 21 52 � 25 60 � 19 59 � 45
DS530 0.87 � 0.03 9 � 23 10 � 25 57 � 24 62 � 26 86 � 62
DS613 0.89 � 0.03 10 � 25 11 � 26 59 � 23 66 � 18 110 � 77
PVE435 0.83 � 0.05 5 � 16 6 � 18 45 � 26 56 � 19 40 � 33

aIdentity and similarity computed considering all possible pairwise comparisons between the peptides in the datasets.
bIdentity and similarity computed considering only hits (Material and Methods).
cAverage number of similarity hits per peptide in the dataset.

Figure 3
Relationship between sequence similarity in peptide datasets and

binding affinity proximity. This figure depicts a boxplot of Rs values

computed for each peptide in a dataset by correlating their identity

with its hits and the difference in logIC50relative values (Material and

Methods). Boxplot were generated for peptides in DS293, DS332, DS465,

DS530, DS613, and PVE435 datasets. Median Rs values in peptide datasets
are indicated with a cross. A negative Rs will indicate that the larger the

sequence similarity between peptides the closer their binding affinity.

Conversely, a positive correlation will reflect that the larger the sequence

similarity between peptides the larger the difference in their binding

affinity.

C.M. Diez-Rivero et al.
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methods of peptide binding affinity to TAP, which are

readily available from the relevant publications (those by

Peters et al.28 and Doytchinova et al.29) or from dedi-

cated Web services (TAPPRED26 and SVMTAP27). The

method developed by Doytchinova et al.29 consists of a

matrix generated from 163 poly-Alanine 9-mer peptides

of known affinity to TAP using an additive method30;

hence, we will refer to this method as ADM. The ADM

method achieved a reported Rp between 0.72 and 0.83,

depending of the testing set.29 The remaining methods

have been trained on the PVE435 dataset.28 Briefly,

Peters’ et al.28 method is based on a consensus matrix

(CM) that was obtained from three scoring matrices,

which included a poly-Alanine derived matrix and a

SMM-matrix (generated using the Stabilized Matrix

Method) trained on the PVE435 dataset. The CM method

achieved a reported Rp of 0.782 on the PVE435 dataset.

The TAPPRED26 and SVMTAP27 methods are based on

SVMs trained solely on the PVE435 dataset and achieved

reported Rp of 0.82 and 0.88, respectively. The TAPPRED

method is based on two layers of SVMs, whereas

SVMTAP consists of a single SVM model, similar to

those trained in this study. We have evaluated all these

methods in a testing set consisting of the 178 peptides of

known affinity to TAP collected in this study (DS178),

using Spearman’s correlation coefficients (Rs) (Table II).

Interestingly, the lowest Rs values were achieved by

TAPPRED and SVMTAP (0.67 and 0.61), the methods

with the largest reported correlations. On the other hand,

CM achieved an Rs (0.87) comparable to the value

achieved by our TAP613 model in cross-validation (0.89),

and AMD achieved an intermediate Rs value of 0.74. Sta-

tistical comparison of these Rs values (Material and

Methods) indicated that the correlations obtained with

the CM and TAP613 methods were significantly stronger

than those obtained with the remaining methods. How-

ever, TAP613 was also trained on the DS178 testing set

used for the comparisons, as surely were both the CM

and ADM methods (DS178 contains binding affinity data

of poly-Alanine peptides).

To further compare these methods, we have used a ref-

erence set of 723 MHCI-restricted T cell epitopes and

correlated the scores predicted by the different methods

(Table III). Interestingly, TAP613 predictions were signifi-

cantly closer to the predictions by CM (Rs 5 0.86), a

matrix-based method, than to those by TAPRED (0.29)

and SVMTAP (0.76), which are based on SVM. Likewise,

ADM predictions also correlated better with TAP613 pre-

dictions (0.59) than with those by TAPPRED (0.17) and

SVMTAP (0.51). The extreme disparity of TAPPRED pre-

dictions with regard to the remaining methods was

already noted by Zhang et al.25 Overall, these results

support the view that existing SVM-based methods

(TAPPRED and SVM) have suffered to some extent from

data over-fitting, particularly TAPPRED, while we do not

expect such a problem with our TAP613 model, as it was

trained on a much larger dataset.

The TAPREG server

We have implemented a Web tool, TAPREG, for predict-

ing the binding affinity of peptides to TAP, which is avail-

able for free public use at http://imed.med.ucm.es/Tools/

tapreg/ [Fig. 4(A)]. There are two models available at the

TAPREG site that were trained both on the DS613 dataset

using the entire peptide sequences; one was generated from

a sparse representation of peptide sequences and the other

from a blosum representation. The model trained on blo-

sum-encoded sequences displayed a somewhat lower pre-

dictive performance (Rp 5 0.87 � 0.03) than the sparse

counterpart (Rp 5 0.89 � 0.03), but nonetheless, it is

included in the TAPREG server because blosum representa-

tion of sequences can often increase the generalization

power of predictive models. The input data for TAPREG

can consist of either protein sequences or multiple peptide

sequences. For the protein sequence, TAPREG returns all

9-mer peptides encompassed by the protein, ranked by

their affinity to TAP (IC50). The number of peptides listed

in the output can also be limited using a user-defined

threshold of binding affinity [Fig. 4(B)]. For the peptide

input, the server returns the affinity of each individual

peptide [Fig. 4(C)]. As TAP can bind and transport pep-

tides of arbitrary length ranging from eight to 16 resi-

dues,14,21 TAPREG will predict the affinity of any peptide

within that length range as described below.

Table II
Correlation Between Experimental TAP Binding Affinities and Predicted

Values Using Different Methods

Method Rs Reference

TAP613 0.89 � 0.03 This study
SMM 0.87 (0.82) 28

ADM 0.74 (0.72–0.83) 29

TAPPRED 0.67 (0.88) 26

SVMTAP 0.61 (0.82) 27

Rs were computed using a testing set of 178 peptides of known affinity to TAP.

For the TAP613 model, Rs shown in the table is that achieved in cross-validation.

Correlations reported in the literature for the different methods are shown in

parentheses.

Table III
Correlation Between TAP Binding Affinity Predictions by Different

Methods

CM TAP613 TAPPRED ADM SVMTAP

CM 1 0.86 0.26 0.84 0.68
TAP613 0.86 1 0.29 0.59 0.76
ADM 0.84 0.59 0.17 1 0.51
TAPPRED 0.26 0.29 1 0.17 0.34
SVMTAP 0.68 0.76 0.34 0.51 1

Table shows Rs values that were obtained by correlating the TAP binding affinity

scores of 723 MHCI-restricted T cell epitopes predicted with the different

methods.
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In general, models generated using machine-learning

algorithms require input data of the same format as the

data used for training. Therefore, in TAPREG, we have

implemented a system to predict the TAP binding affinity

of any peptide longer than nine residues, for example,

ALRQFDSMERDNAVFL, by applying the model to a

peptide fragment encompassing the first five N-terminal

and last four C-terminal residues of the longer peptide;

in this example, ALRQFAVFL. For peptides of eight resi-

dues, for example AVDFSDRS, we simply insert an Ala-

nine at P6, AVDFSADRS, and then predict the binding

affinity. Note that the P6 residue had the lower contribu-

tion to TAP binding [Fig. 1(A)]. Using the 5N3C model,

which achieved the same correlation as the TAP613 model

that was trained on the entire 9-mer peptides (Fig. 2),

the binding of any peptide longer than eight residues

could be predicted by applying the model to a derivative

fragment consisting of the first 5 N-terminal and last 3-C

terminal residues.

DISCUSSION

The majority of TAP binding models have been

derived from the same dataset consisting of �435 9-mer

peptides of known affinity which was made available by

Dr. Peter van Endert28 (PVE435). In contrast, in this

work, we have used a larger dataset of 613 peptides

(DS613)—encompassing 178 new extra peptides—to

study TAP selectivity quantitatively, using SVM regres-

sion models that were trained on single residue and

residue combinations drawn from the peptides in the

dataset. Thus, we have been able to recognize that each

peptide position has a significant contribution to TAP

binding, and that the contribution of the P4 residue is

equivalent to that of the P3 residue [Fig. 1(A)]. Previ-

ously, only the positions P1, P2, P3, and the C-terminal

end of the peptide were thought to be clearly relevant

for binding to TAP.12,22,26,28,29 We have confirmed

that the C-terminal end of the peptide has the largest

quantitative input to TAP binding; a model trained on

this residue alone reached an Rp 5 0.68 � 0.06. None-

theless, we have shown that the N-terminal half of the

peptide has a larger contribution to TAP binding than

the C-terminal half of the peptide, as judged by the pre-

dictive performance of SMVs trained on peptide frag-

ments encompassing a varying number of N-terminal

and C-terminal residues of the peptides in the DS613
dataset (Fig. 2).

Figure 4
TAPREG server for predicting peptide binding affinity to TAP. (A) TAPREG Web interface. TAPREG can take two types of input data consisting of

either multiple peptides in FASTA format (size 8 to 16 allowed) or a protein sequence in FASTA format. For protein sequences, TAPREG computes

the TAP affinity of all 9-mer peptides in the protein and returns the peptides sorted by their affinity (IC50) (Panel B). When multiple peptides are

submitted, the program returns the binding affinity to TAP (IC50) of each peptide (Panel C).

C.M. Diez-Rivero et al.
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Optimal modeling of the binding affinity of peptides

in the DS613 dataset was achieved by SVM models

trained on the full-length peptide sequences (TAP613) or

on 8-residue fragments consisting of the first five N-ter-

minal and last three C-terminal residues (5N3C) of the

peptides (Rp 5 0.89 � 0.03) [Figs. 1(B) and 2]. These

results may reflect the observation that TAP can trans-

port peptides of eight and nine residues with comparable

efficiency.14,21 Overall, that optimal fitting of TAP bind-

ing affinity data required training on multiple peptide

residues also implies that all peptide residues—perhaps

with the exception of the P6 residue—have a relevant

contribution to TAP binding.

The correlation between predictions and experimental

binding affinity values achieved by models TAP613 and

5N3C, both trained on the DS613 dataset, is larger (0.89

� 0.03) than that reported for any predictive model of

TAP binding affinity.26-29 It is worth noting that, unlike

any of the related studies, we have not only evaluated the

predictive performance of our models in cross-validation

experiments but have also repeated the experiments

10 times and provided confidence values (standard devia-

tions). Moreover, we have also shown that the enhanced

predictive performance obtained with the model trained

on the DS613 dataset is not related to sequence similarity

redundancy (Fig. 3). In fact, we have found that peptides

with high sequence similarity generally differ in their

binding affinity (Fig. 3). Therefore, similar sequences are

not redundant, and instead of inflating prediction rates,

have a genuine contribution to model TAP binding affin-

ity appropriately; hence, the enhanced prediction rates

that we have obtained with the model trained in the

DS613 dataset (Table I).

Using the new 178 peptides of known affinity to TAP

collected in this study as a testing set (DS178 dataset), we

have proved that two previous SVM-based methods

(TAPPRED26 and SMVTAP27) for predicting binding af-

finity of peptides to TAP, which were trained on the

PVE435 dataset, appear to have suffered to some extent

from data overfit; they achieved much lower correlation

coefficients in the testing DS178 dataset than those

reported on the PVE435 dataset (Table II). We have also

evaluated two matrix-based methods, ADM29 and

CM,28 on the same DS178 dataset, and they achieved cor-

relations (0.87 and 0.74, respectively) that were similar to

those originally reported by the authors (Table II). How-

ever, it is likely that these two matrix-based methods

were trained on some of the peptides included in the

DS178 dataset, because they were developed using binding

affinity data of poly-Alanine peptides, such as those

included in the DS178 dataset. In any case, TAP binding

affinity predicted by our SVM models correlated more

closely with those predicted by CM than with those pre-

dicted by related SVM-based methods (Table III). Over-

all, these results highlight the relevance of identifying and

including new data points for training predictive models.

In this study, we have also developed a Web-based

tool, TAPREG, to predict the binding affinity of peptides

to TAP, which is available for free public use at http://

imed.med.ucm.es/Tools/tapreg/. Currently, there are two

dedicated web-based tools to predict the binding affinity

of peptides to TAP: SMVTAP27 (http://www-bs.informatik.

uni-tuebingen.de/Services/SVMTAP/) and TAPPRED26

(http://www.imtech.res.in/raghava/tappred/), both of them

based on SVMs. These two resources use a protein

sequence as input and report the 9-mer peptides encom-

passed by the protein, ranked by their predicted binding

affinity to TAP. In addition to this task, TAPREG can be

used to predict the binding affinity to TAP of multiple

peptides with a length ranging from eight to 16 resi-

dues,14,21 which is consistent with the transport activity

displayed by TAP.

Until now TAP binding affinity of peptides longer than

nine residues could only be achieved using quantitative

matrices, and only the 3 N-terminal residues and the

C-terminus of the peptide were considered to matter for

TAP binding.28 In contrast, in TAPREG, we compute the

TAP affinity using nine residues selected from the larger

peptides—those equivalent to the 9-mer peptides used

for training—as we have shown that all residues in a 9-

mer peptide contribute to binding. To our knowledge,

this is the first machine-learning based approach that can

predict the binding affinity to TAP of peptides longer

than nine residues.

CONCLUSIONS

We have used a large dataset of 9-mer peptides of

known affinity to TAP to dissect the TAP binding prefer-

ences, concluding that each peptide position has a quan-

titative contribution to TAP binding. Moreover, we have

been able to generate SVM models with enhanced predic-

tive performance as a result of including new peptide

binding data. Because accurate modeling of TAP activity

is relevant for T cell epitope selection,12,13 we have

implemented the Web-based tool TAPREG (http://imed.

med.ucm.es/Tools/tapreg/). Unlike any related resource,

TAPREG can be used to predict the binding affinity of

peptides ranging from eight to 16 residues, in a manner

that is consistent with the activity exhibited by TAP.
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