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Prediction of Peptide–MHC Binding Using Profiles

Pedro A. Reche∗ and Ellis L. Reinherz

Summary

Prediction of peptide binding to major histocompatibility complex (MHC) molecules is a
basis for anticipating T-cell epitopes. Peptides that bind to a given MHC molecule are related by
sequence similarity. Therefore, a position-specific scoring matrix (PSSM)—also known as profile—
derived from a set of aligned peptides known to bind to a given MHC molecule can be used
as a predictor of both peptide–MHC binding and T-cell epitopes. In this approach, the binding
potential of any peptide sequence (query) to the MHC molecule is determined by its similarity to
a set of known peptide–MHC binders and can be obtained by comparing the query to the PSSM.
Following structural considerations of the peptide–MHC interaction, we will describe here how to
derive alignments and PSSMs that are suitable for the prediction of peptide–MHC binding.
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1. Introduction
T-cell immune responses are triggered by the recognition of foreign peptide

antigens bound to cell membrane-expressed major histocompatibility complex
(MHC) molecules (1–3). Because T-cell recognition is limited to those peptides
presented by MHC molecules, prediction of peptides that can bind to MHC
molecules is the basis for the anticipation of T-cell epitopes (4–6). Peptides
binding to MHC molecules must fit into a specific chemical and physical
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environment conditioned by polymorphic residues in the MHC molecule (7–9).
Consequently, distinct MHC molecules have distinct peptide-binding speci-
ficities (9). In addition, the peptides that bind to the same MHC molecule are
related by sequence similarity. Sequence patterns reflecting amino acid prefer-
ences in peptide–MHC binders (anchor residues) are routinely used for defining
peptide–MHC binding motifs and prediction of peptide–MHC binding (10,11).
For example, the binding motif of the human MHC class I (MHCI) molecule
A∗0201 may be described by the following sequence pattern:

X-[AILMVT]-X6-[AILMVT]�

This motif indicates that A∗0201 will preferentially bind peptides of nine
residues having an Ala, Ile, Leu, Met, Val, or Thr residue at positions 3 and
9, which act as anchor positions. However, the binding ability of a peptide to
a given MHC molecule cannot be explained by the presence of a few anchor
residues, and indeed, non-anchor residues contribute to peptide–MHC binding
(12,13). Instead, a position-specific scoring matrix (PSSM) or profile created
from a set of aligned sequences of peptide–MHC binders provides a better
alternative for capturing the complexity of peptide–MHC binding motifs. These
PSSMs can be also used to quantify the relatedness of any peptide to the known
peptide–MHC binders, thus serving as predictors of peptide–MHC binding.

PSSMs were first introduced by Gribskov et al. (14) for the detection
of distantly related proteins and are now widely used for the representation
and identification of sequence motifs (15,16). In essence, a PSSM consists
of a table containing a form of frequency count of each one of the 20
amino acids observed in every column of an alignment divided by the corre-
sponding expected frequency of that amino acid in the background (usually
the frequency of the amino acid in a reference database). In addition, methods
for the derivation of profiles also provide corrections for missing data and
sequence redundancy in the alignments, which are essential to increase the
detection limits of PSSMs (17,18). Missing and/or low counts in the align-
ments are corrected using pseudo-counts estimated from substitution matrices
(17), whereas sequence redundancy is corrected by applying sequence weights
before the estimation of the amino acid counts.

A PSSM is a good descriptor of the peptide–MHC binding motif, only if
the peptide–MHC binders are aligned by structural and/or sequence similarity.
There are two types of MHC molecules, class I (MHCI) and class II (MHCII),
which actually present peptide antigens for recognition by two distinct sets of
T cells, CD8+ and CD4+, respectively (7). MHCI and MHCII molecules bind
peptides in a different mode, and thus, for aligning MHCI and MHCII ligands,
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we devised two distinct procedures that are compatible with the structural
and molecular basis of the peptide–MHCI and peptide–MHCII interactions. In
thischapter, we will describe these two procedures, and we will illustrate the
prediction of peptide–MHC binding through the use of PSSMs.

2. Materials
2.1. Databases

Prediction of peptide–MHC binding using profiles require the availability of
the sequence of peptides known to bind to MHC molecules. These sequences
can be retrieved from any of the available public databases of MHC ligands
(Table 1). However, in this study, we used the EPIMHC database (19) as the
only source of MHC ligands (Table 1). All peptides in EPIMHC are MHC
binders, and their binding strength is reported as unknown, low, moderate, or
high. Importantly, the EPIMHC database (http://bio.dfci.harvard.edu/epimhc/)
has been designed to facilitate the query, extraction, and analysis of data by
third parties. To illustrate the prediction of peptide–MHC binding using PSSMs,
we selected from the EPIMHC the sequences of 178 and 80 peptides annotated
to bind with high affinity to A∗0201 (human MHCI molecule) and DRB1∗0401
(human MHCII molecule), respectively. The protein sources of the peptides
were also retrieved from the EPIMHC database. All A∗0201 peptide binders
had a length of nine residues (9 mers), whereas the DRB1∗0401 peptide binders
were variable in length with at least nine residues. These sets of peptides are
available as supplemental data from the site http://bio.med.ucm.es/methods/.

2.2. Software

The applications used in this study are indicated in Table 2. All these
packages are freely available for academia users and were compiled and/or
under the LINUX operating system. The core applications used for deriving
alignments and profiles from MHC ligands are PROFILEWEIGHT (18),
BLIMPS (20), and MEME (21). In addition to these applications, we used
a set of Perl scripts to format data and/or handle the applications described
above. These scripts are summarized in Table 2, and their use will be described
elsewhere in Methods.

2.3. Leave-One Out Cross-Validation

Performance of PSSMs predicting peptide–MHC binding was evaluated
using a leave-one out cross-validation (LOOCV). Briefly, for a set of peptides
n known to bind to a given MHC molecule, a PSSM is generated from n – 1
peptides and used to test the binding of the remaining peptide (target peptide).
This process is repeated n times until the binding of each peptide is tested.
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3. Methods
3.1. Structural Alignments of MHCI and MHCII ligands

Capturing the complexity of the peptide–MHC binding motif in the form
of a PSSM that can be used for the prediction of peptide–MHC binding
requires the alignment of known MHC ligands by structural and/or sequence
similarity. Peptides bound to MHCI molecules are in an extended confor-
mation with several side chains accommodated in the binding pockets of the
MHCI binding groove, and the N-terminal and C-terminal pinned into the
groove (7,8) (Fig. 1A). As a consequence, MHCI ligands are of short length
(8–11 residues), and proper structural alignment can be best accomplished by
piling up peptides that have the same length (22). In contrast, the peptide
binding groove of MHCII molecules is open, allowing both the N-terminal and
C-terminal of a peptide to extend beyond the binding groove (7,8) (Fig. 1B).
Consequently, peptides bound to MHCII molecules display a great variability
in length (9–22 residues). Nevertheless, only a peptide core of nine residues
fits into the MHCII binding groove per se and is responsible for anchoring the
peptide to the MHCII molecule (3). This peptide core of nine residues binds in
a conserved mode across the different peptide–MHCII complexes, sitting in the
groove in an extended conformation connected through a network of hydrogen
bonds between its backbone and conserved residues in the MHCII molecule
(3,7,8,23). As a result, the peptide-binding repertoire of MHCII molecules is
broader than that of MHCI molecules, and MHCII ligands share less sequence
similarity than MHCI ligands. Poor amino acid sequence similarity between
MHCII ligands together with their great variability in sequence length makes
their alignment difficult, hampering the use of global alignment algorithms such
as CLUSTALW (24). Because alignment of the MHCII ligands requires the
identification of their binding core, we use the motif discovery program MEME
(21) for aligning them. MEME uses an expectation-maximization algorithm
in combination with a priori information to identify sequence motifs. The a
priori information we use for aligning MHCI ligands is consistent with the
interaction of peptides and MHCII molecules, namely, the existence of a single
peptide-binding register per se MHCII ligand stretching nine residues.

3.2. Generation of Alignments and PSSMs from MHCI and MHCII
Ligands

The strategy to derive alignments and profiles from known MHCI and MHCII
ligands for the prediction of peptide–MHC binding consists of three basic
steps: (i) peptide collection and subsequent subsetting by their MHC-binding
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Fig. 1. Binding of peptide ligands to major histocompatibility complex class I
(MHCI) and MHCII molecules. The figure shows the top of the molecular surface
of the antigen-presenting platform of representative human MHCI (A) and MHCII
(B) molecules as viewed by the T-cell receptor. The MHCI molecule corresponds to
HLA-A∗0201 in complex with a peptide LLFGYPVYV from HTLV-1 TAX protein
[PDB: 1HHK;(41)]. The MHCII molecule corresponds to HLA-DR1 in complex with
peptide PKYVKQNTLKLAT from influenza hemagglutinin protein [PDB:1FYT (42)].
Peptides bound to these molecules are represented by sticks to highlight the contours
of the binding groove. Note how the peptide binding groove of the MHCI molecule
is closed, and peptides bind in a manner such that both the N-terminal and C-terminal
ends of the peptide (indicated by arrows) are nested into the MHCI binding groove,
restricting their lengths to 8–11 residues. In contrast, the peptide binding groove of the
MHCII molecule is open, thereby imposing no limitation to the size of ligands, whose
N-terminal and C-terminal ends can extend beyond the binding grove. The side chains
of N-terminal and C-terminal ends of the 9-mer peptide core fitting into the MHCII
binding groove are indicated. The figure was prepared using GRASP (43).

specificity and length in the case of MHCI ligands; (ii) generation of ungapped
alignments; and (iii) generation of PSSMs from alignments. An outline of this
strategy is shown in Fig. 2 and the detailed description is as follows.

1. Peptide collection and subsetting: In the case of MHCI ligands, the
sequences must be subgrouped into files according to their MHCI-binding speci-
ficity and subsequently by sequence length. Peptides with 12 or more amino
acids bind to MHCI molecules only exceptionally, and therefore, alignments
and profiles should only be made from subsets of peptides of length 8, 9, 10,
and 11. Furthermore, given that most of the known MHCI-restricted peptides
are 9 mers (∼90%) (data not shown), we suggest to preferentially make/use
profiles from peptides of nine residues (9 mers). In the case of MHCII ligands,
sequences must be subgrouped into distinct files only by their MHCII-binding
specificity, and peptides with less than nine residues must be discarded. MHC



192 Reche and Reinherz

Fig. 2. Overview of the strategy for defining position-specific scoring matrices
(PSSMs) from major histocompatibility complex class I (MHCI) and MHCII ligands.
The basic steps for defining PSSMs are (A) peptide collection and subsetting of peptides
by their MHC-binding specificity (x) and length (l) in the case of MHCI ligands; (B)
generation of ungapped alignments; and (C) generation of PSSMs from alignments.

ligands meeting the above criteria can be obtained using the web interface of
EPIMHC. Peptides should be saved as plain TEXT and in FASTA format.
Alternatively, the Perl script epimhc.pl can be used to retrieve peptides from
EPIMHC on the command line. For example, to create a FASTA file with all
peptides in EPIMHC binding with high affinity to HLA-A∗0201, one can use
the following command:

epimhc.pl -m ‘HLA-A∗0201’ -s 9 -b high

Likewise, the command:

epimhc.pl -m ‘HLA-DRB1∗0401’ -b high

will generate a FASTA file with all peptides in EPIMCH binding to DRB1∗0401
with high affinity. Peptides with less that seven residues will not be included
in this file.
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2. Generation of ungapped motif alignments: MHCI ligands of the same
length in the FASTA files generated in the step above are already aligned. For
aligning MHCII ligands, we use MEME with the following command:

meme mhcii_lig.fasta -protein -mod oops -nmotifs 1 -minsites 4\
-maxsites 300 -minw 9 -maxw 9 -evt 10000 > mhcii_lig.meme

where mhcii_lig.fasta -protein corresponds to each of the MHCII-specific
subsets of peptide sequences in FASTA format; -mod oops indicates that each
sequence has a binding site; -minsites 4 -maxsites 500 indicates that the motif
should contain between 4 and 500 sequences; -min 9 -maxw 9 indicates that
the size of the motif is exactly 9; and finally -evt 10000 is the expected
threshold value for a sequence to be included in the motif. The output of
MEME (mhcii_lig.meme) will contain a log-odd and a probability PSSM of
the MHCII ligands’ binding core which can readily be used for the prediction
of peptide–MHCII binding. However, for consistency with the profiles derived
from MHCI ligands, we obtain instead the motif alignment in the MEME output
using the Perl script meme2fasta.pl and built the PSSM in the next step. The
use of the script meme2fasta.pl is as follows:

meme2fasta.pl -i mhcii_lig.meme

This command will format the motif alignment in the output of MEME into
FASTA format, discarding repeated sequences. The alignment obtained with
MEME encompasses the binding core of the MHCII ligands.

3. Generation of PSSMs from alignments of MHC ligands: There are many
methods to derive profiles from alignments that differ in the sequence weighting
and in the computation of amino acid counts and pseudocounts. Here, we will
describe the generation of profiles using PROFILEWEIGHT (18) and the appli-
cations included in the BLIMPS package (17,25). In both cases, pseudocounts
are estimated using the BLOMUS62 substitution matrix-derived protein blocks
(26). To learn about the actual equations used in these packages see Thompson
et al. (18) and Henikoff and Henikoff (27). PROFILEWEIGHT uses a branch-
proportional weighting method and requires an alignment in GCG/MSF format
as input. BLIMPS PSSMs are generated through the sequential use of the
following three applications: mablock, to translate alignments from FASTA
format to BLOCK format; blweight, to apply weights to the sequences in
the alignment, and blk2pssm, to generate the actual PSSM. The application
blweight supports four distinct weighting methods: P, position-based method
(28); A, pairwise distance method (29); V, Voroni method (30), and Cn,
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clustering method (26). The generation of matrices with PROFILEWEIGHT
and BLIMPS can be facilitated using the Perl script mkmatrix.pl. For example,
the command:

mkmatrix.pl -i peptides.tfa -w pw

will convert the alignment peptides.tfa into GSF/MSF format and create a
PSSM using PROFILEWEIGHT. The PSSM will be saved under the name
peptides.pw.mtx. Likewise the command:

mkmatrix.pl -i peptides.tfa -w p

will generate a PSSM under the name peptides.p.mtx using BLIMPS and
position-based weights.

3.3. Scoring Peptide–MHC Binding Using PSSMs

PSSMs can be used to provide scores indicating the similarity (and hence
binding potential) of any peptide to the set of aligned peptides known to bind to
a given MHC molecule. These scores are computed by aligning the PSSM with
the protein segments with the same length than the width of the PSSM (length
of the alignment) and adding up the appropriate profile coefficients matching
the residue type and position in the protein segment. Scoring all peptides in an
entire protein sequence requires a dynamic algorithm that starts scoring at the
beginning of the sequence and then moves the PSSM over the entire sequence
one residue at a time to score the remaining peptides. Here, we provide the
Perl script rankpep.pl as an example of dynamic scoring algorithm. The use of
the script is as follows:

rankpep.pl -i sequence.fasta -m file.mtx

where sequence.fasta is the sequence query in FASTA format and file.mtx is
the PSSM. The output of the program is a list of all peptides in the input
sequence ranked by their score. Rank per se may, however, be insufficient to
assess whether a peptide is a potential binder. Consequently, to better address
whether a peptide might bind or not to a given MHC molecule, one should
consider scoring all the peptides in the alignment from which the PSSM was
obtained. Then, any given peptide can be considered a binder if it has a score
within the range of scores of the peptides known to bind to the relevant MHC
molecule.
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3.4. Performance of PSSMs Predicting Peptide Binding to MHCI
and MHCII Molecules

Only peptides that bind to MHC with an affinity above a necessary threshold
are able to elicit a T-cell response. Therefore, determining whether known
peptide–MHC binders can be identified among the high-scoring peptides within
their protein sources is the best way to check whether prediction of peptide–
MHC binding using PSSMs is of practical utility. Here, we have tested this
notion for two sets of peptide ligands, one consisting of high-affinity binders
to the human MHCI molecule A∗0201 (Fig. 3A) and another of high-affinity
binders to the human MHCII molecule DRB1∗0401 (DR4) (Fig. 3B). These
MHC ligands were aligned as indicated in section 3.2, and the binding of each
of the peptides in the resulting alignments to the relevant MHC molecule was
tested at different thresholds (0.5%, 1%, 2%, 3%, 4%, 5%, 10%, and 20%)
under a LOOCV (see Section 2.3). At a given threshold, a peptide is computed
as “to bind” if it is among the top scoring peptides from its protein source
at that threshold. It is known that sequence weighting increases the sensi-
tivity of profiles. Therefore, we carried out these prediction tests using PSSMs
generated with PROFILEWEIGHT which applies branch-proportional weights
(empty bars) and BLIMPS with position-based weights (black bars). The results

Fig. 3. Performance of position-specific scoring matrices (PSSMs) predicting
peptide–major histocompatibility complex (MHC) binding. Performance of PSSMs
predicting the binding of 178 peptides to A∗0201 (A) and 66 peptides to DR4 (B) was
evaluated by testing whether the peptides are predicted from their protein sources under
a leave-one out cross-validation (LOOCV). Predictions were carried out at different
thresholds (abscissa), and the percentage of correctly predicted peptides is plotted in
the figure (ordinate). PSSMs were derived using PROFILEWEIGHT (empty bars) and
BLIMPS with position-based weights (black bars).
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indicated that ≥80% of the A∗0201 peptide binders are predicted at a 2%
threshold (Fig. 3A), whereas ∼45% of the DR4 peptide binders are predicted at
this threshold (Fig. 3B). As previously reported (22,31), PSSMs derived with
BLIMPS and PROFILEWEIGHT are comparable predicting peptide binding
to A∗0201. However, for the prediction of peptide binding to DR4, PSSMs
obtained with BLIMPS applying position-based weights were significantly
better than those obtained using PROFILEWEIGHT (Fig. 3B).

4. Concluding Remarks
PSSMs are powerful tools to detect new and diverse sequences that are

functionally related to those included in the original alignment (peptides binding
to MHC molecules) and can be used to identify those peptides that can bind to
MHC molecules. Prediction of peptide–MHC binding using PSSMs appears
to be more accurate for MHCI molecules. (Fig. 3). This observation does
not necessarily indicate that the MHCII-specific PSSMs were derived from
incorrect alignments but rather could reflect the greater structurally inherent
peptide-binding promiscuity of MHCII molecules (see Section 3.1).

Prediction of peptide–MHC binding has been approached by a large array of
methods including quantitative matrices (32–34), machine learning algorithms
(MLAs) (35,36), and peptide threading (37,38). Despite the fact that direct
comparison between the various methods is not straightforward, some reports
have indicated that MLAs such as artificial neural networks yield the best
predictors of peptide–MHC binding, and it has been linked to the fact that
MLAs can model binding interferences between peptide side chains, whereas the
remaining methods, including PSSMs, assume independent binding of each side
chain. Nevertheless, independent binding is generally supported by experimental
evidence (32,39), and furthermore, considering side chain pair interactions
only results in marginal improvement peptide–MHC binding predictions (40).
Likewise, in a recent study, we have shown that PSSMs give similar or better
results than those reported for MLAs (31). Thus, there may be more disadvan-
tages than benefits when applying MLAs to the prediction of peptide–MHC
binding. Thus, unlike PSSMs, MLAs are very prone to overfit data and are very
sensitive to “dirty data.” Consequently, much care and time has to be taken
in preprocessing the data before training. Also, MLAs, as well as most data-
driven methods used for predicting peptide–MHC binding, do not account for
unseen data, instead only fitting the data they are provided with. Not surpris-
ingly, it has also been shown that simple motif matrices outperform MLAs
predictingpeptide–MHCbindingwhen the trainingsetsarecomposedofa reduced
set of samples (≤100 peptides) which is by large the most frequent scenario (4).



Prediction of Peptide–MHC Binding 197

Prediction of peptide–MHC binding using PSSMs is also available
at the RANKPEP web site (http://bio.dfci.harvard.edu/Tools/rankpep.html).
Currently, 88 and 50 different MHCI and MHCII molecules, respectively, can
be targeted for peptide-binding predictions in RANKPEP. This server is very
versatile providing a framework for the prediction of MHC–peptide binding
using profiles provided by the user.
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