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Definition of MHC Supertypes Through Clustering
of MHC Peptide-Binding Repertoires

Pedro A. Reche∗ and Ellis L. Reinherz

Summary

Identification of peptides that can bind to major histocompatibility complex (MHC) molecules
is important for anticipation of T-cell epitopes and for the design of epitope-based vaccines.
Population coverage of epitope vaccines is, however, compromised by the extreme polymorphism
of MHC molecules, which is in fact the basis for their differential peptide binding. Therefore,
grouping of MHC molecules into supertypes according to peptide-binding specificity is relevant
for optimizing the composition of epitope-based vaccines. Despite the fact that the peptide-
binding specificity of MHC molecules is linked to their specific amino acid sequences, it is
unclear how amino sequence differences correlate with peptide-binding specificities. In this
chapter, we detail a method for defining MHC supertypes based on the analysis and subsequent
clustering of their peptide-binding repertoires
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1. Introduction
Major histocompatibility complex (MHC) molecules play a key role in the

immune system by capturing peptide antigens for display on cell surfaces.
Subsequently, these peptide–MHC (pMHC) complexes are recognized by
T cells through their T-cell receptors (TCRs). MHC molecules fall into two
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major classes, MHC class I (MHCI) and MHC class II (MHCII). Antigens
presented by MHCI and MHCII are recognized by two distinct sets of T cells,
CD8+ T and CD4+ T cells, respectively (1). Because T-cell recognition is
limited to those peptides presented by MHC molecules, prediction of peptides
that can bind to MHC molecules is important for anticipating T-cell epitopes
and designing epitope-based vaccines (2–4). Furthermore, the availability of
computational methods that can readily identify potential epitopes from primary
protein sequences has fueled a new epitope discovery-driven paradigm in
vaccine development.

A major complication to the development of epitope-based vaccines is the
extreme polymorphism of the MHC molecules. In the human, MHC molecules
are known as human leukocyte antigens (HLAs), and there are hundreds of
allelic variants of class I (HLA I) and class II (HLA II) molecules. These HLA
allelic variants bind distinct sets of peptides (5) and are expressed at vastly
variable frequencies in different ethnic groups (6). Consequently, the potential
population coverage of epitope-based vaccines is greatly compromised. Interest-
ingly, it has been noted that some HLA molecules can bind largely overlapping
sets of peptides (7,8). Therefore, grouping of MHC molecules into supertypes
according to peptide-binding specificity is of relevance for the formulation of
epitope vaccines providing a wide population coverage.

The first supertypes were defined by Sidney, Sette, and co-workers (7,8)
(hereafter Sidney–Sette et al.) upon inspection of the reported peptide-binding
motifs of individual HLA alleles. However, the relationships between peptide-
binding specificities of HLA molecules may be too subtle to be defined by
visual inspection of these peptide-binding motifs. Furthermore, such sequence
patterns have proven to be too simple to describe the binding ability of a peptide
to a given MHC molecule (9,10). In view of these limitations, we developed an
alternative method to define MHC supertypes by clustering the peptide-binding
repertoire of MHC molecules. The core of the method consists of the generation
of a distance matrix whose coefficients are inversely proportional to the peptide
binders shared by any two MHC molecules. Subsequently, this distance matrix
is fed to a phylogenic clustering algorithm to establish the kinship among
the distinct MHC peptide-binding repertoires. The peptide-binding repertoire
of any given MHC molecule is unknown, and thereby, defining supertypes
through this method requires the estimation of the peptide-binding repertoire of
MHC molecules. In this chapter, we will use position-specific scoring matrices
(PSSMs) as the predictor of peptide–MHC binding (11,12) and describe in
detail the generation of supertypes using, for example, a selection of HLA class
I (HLA I) molecules for which PSSMs are readily available.
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2. Materials
2.1. Prediction of Peptide–MHC Binding Repertoires

We consider the peptide-binding repertoire of any MHC molecule as the
subset of peptides predicted to bind from a reference set consisting of a random
protein of 1,000 amino acids. A selection of public online resources that can
be used for the prediction of peptide–MHC binding is summarized in Table 1.
In our study PSSMs derived from aligned MHC ligands as the predictors of
peptide–MHC binding (11,12). In this approach, the binding potential of any
peptide sequence (query) to the MHC molecule is determined by its similarity
to a set of known peptide–MHC binders and can be obtained by comparing the
query to the PSSM. Prediction of peptide–MHC binding is threshold-dependent,
and here we use the same threshold for all MHC molecules. Thus, the size of
the peptide-binding repertoire of all MHC molecules is considered to be same
(same number of peptides).

2.2. Supertype Construction

MHC supertypes are derived following the general scheme illustrated in
Fig. 1 . First, the overlap between the predicted peptide-binding repertoires (see
Section 2.1) of any two MHC molecules, pMHCi and pMHCj , is computed as
the number of peptide binders shared by the two molecules. Let that number
be nij . Subsequently, a distance coefficient (dij) is defined as follows:

dij = N −nij� (1)

where N is the size of the peptide-binding repertoire of the MHC molecule.
Thus, if the peptide-binding repertoire between two MHC molecules is identical,
then dij = 0. Alternatively, if they share no peptides in common, dij will match
the size of the binding repertoire, N . Through the repetition of this process
over all distinct pairs of MHC molecules, a quadratic distance matrix is derived
containing the dij coefficients for all distinct pairs of MHC molecules. Once the
distance matrix is obtained, we use the Phylogeny Inference Package (PHYLIP;
http:// evolution.genetics.washington.edu/phylip.html) (13) to generate a phylo-
genic tree where the MHC molecules appear clustered according to their
peptide-binding specificity. Specifically, within the PHYLIP package one must
use applications such as kitsch and neighbor that take distance matrices as input.
The kitsch application uses a Fitch–Margoliash criterion and assumes an evolu-
tionary clock (14). On the other hand, the neighbor application uses the popular
neighbor-joining method to derive an unrooted tree without the assumption of a
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Fig. 1. Strategy to define major histocompatibility complex (MHC) supertypes.
MHC supertypes are identified as follows: (1) estimate number of common peptides,
nij , between the binding repertoires of any two MHC molecules, pMHCi and pMHCj;
(2) obtain a distance matrix whose coefficients, dij , are inversely proportional to
the peptide-binding overlap between any pair of MHC molecules; and (3) derive a
dendrogram using a phylogenic clustering algorithm to visualize MHC supertypes
(groups of MHC molecules with similar peptide-binding specificity). N is the size of
the peptide-binding repertoire of the MHC molecule.

clock (15). For instance, to generate a tree using the neighbor-joining algorithm
method one can use the command:

echo Y � neighbor > /dev/null�

This command will generate a tree from a distance matrix that must be named
as infile using the default options of the neighbor application. Likewise, one
may use similar commands to generate trees using other applications. In any
case, these applications will generate two files, one named outfile displaying the
tree and another named treefile describing the tree in NEWICK format, which
can be used to visualize and manipulate the tree using third party applications
such as TREEVIEW (http:// taxonomy.zoology.gla.ac.uk/rod/treeview.html).

3. Methods
3.1. HLA I Supertypes

Definition of MHC supertypes using the method described here requires
the estimation of the peptide-binding repertoire of the MHC molecules using
predictors of peptide–MHC binding. The prediction of peptide–MHCII binding
is generally less reliable than that of peptide–MHCI binding (12). Therefore, to
illustrate the definition of MHC supertypes, we focused on 55 HLA I molecules
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(human MHCI) for which we can readily predict their peptide-binding reper-
toires using PSSMs (see Section 2). Given that MHCI ligands are usually nine
residues in length, we selected PSSMs for the prediction of binders of that same
size (nine residues). In previous studies we have shown that depending on the
specific MHCI molecule, the accuracy of peptide–MHCI binding predictions
is optimal by considering as binders the top 2–5% scoring peptides (2–5%
threshold) within a protein query (12). Here we have estimated the peptide-
binding repertoire of the selected HLA I molecules using a 2% threshold. Thus,
following the method described above with a Fitch and Margoliash clustering
algorithm (14) (Section 2.2; kitsch application), we generated the phylogenic
tree, which is shown in Fig. 2. In this tree, HLA I molecules with similar
peptide-binding specificity (large overlap in their peptide-binding repertoires)
branch together in groups or supertypes. The relationship between the peptide-
binding specificities of HLA I molecules is extensive, and although affinities
are mostly confined to alleles belonging to the same gene, they also reach to
alleles belonging to different genes (Fig. 2, B15 cluster; B∗4002 and A∗2902;
and A∗2402 and B∗3801). We clearly identified the classic A2, A3, B7, B27,
and B44 supertypes previously defined by Sidney–Sette et al., as well as three
new potential supertypes, BX, AB, and B57 (Fig. 2). Furthermore, this analysis
indicates that classic HLA I supertypes may be larger than that previously
thought. For instance, the A2 supertype would also include the A0207, A0209,
and A0214, and the A3 supertype will also include A∗6601.

3.2. Combined Phenotypic Frequency of HLA I Supertypes

HLA I-restricted peptides are the targets of CD8+ cytotoxic T lymphocytes
(CTLs). The population protection coverage (PPC) of a vaccine composed of
CTL epitopes is given by the combined phenotypic frequency (CPF) of the
HLA I molecules restricting the epitopes, and it can be computed from the gene
and haplotype frequencies (16). Using the allelic and haplotype frequencies
reported by Cao et al. (17) corresponding to five major American ethnic groups
(Black, Caucasian, Hispanic, Native American, and Asian), we have computed
the CPF for the HLA I supertypes defined in the previous section (Section 3.1),
and the values are tabulated in Table 2 . Targeting HLA I supertypes for the
prediction of promiscuous peptide binders allows to minimize the total number
of predicted epitopes without compromising the population coverage required
in the design of multi-epitope vaccines. However, including many distantly
related HLA I molecules in the supertypes may result in too few or no epitopes
predicted to bind to all the alleles included in the supertype. Therefore, for
the CPF calculations, we have limited the composition of HLA I supertypes to
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Fig. 2. Human leukocyte antigen (HLA) I supertypes. This figure shows an unroot
dendrogram reflecting the relationships between the peptide-binding specificities of
HLA I molecules. The closer the HLA I alleles branch, the larger the overlap between
their peptide-binding repertoires. Groups of HLA I alleles with similar peptide-binding
specificities branch together defining supertypes (shaded groups).

include only those HLA I alleles with ≥20% peptide-binding overlap (pairwise
between any pair of alleles).

The A2, A3, and B7 supertypes have the largest CPF in the five studied ethnic
groups, providing a CPF close to 90%, regardless of ethnicity. To increase
the CPF to 95% in all ethnicities, it is necessary to include at least two more
supertypes. Specifically, the supertypes A2, A3, B7, B15, and A24 or B44
represent the minimal supertypic combination providing a CPF ≥95%. These
results indicate that as few as five epitopes restricted by the mentioned HLA I
supertypes may be enough to develop a vaccine eliciting CTL responses in the
whole population, regardless of ethnicity.
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4. Conclusions
HLA molecules are represented by hundreds of allelic variants displaying

distinct peptide-binding specificities, and grouping them into supertypes is
relevant for developing epitope-based vaccines with a wide PPC. The peptide-
binding specificity of HLA molecules stems from the specific amino acids lining
their binding groove, and consequently, supertypes may be defined from struc-
tural analysis (18–20). However, it is not always clear how amino acid sequence
differences among HLA molecules translate into distinct peptide-binding speci-
ficities. Indeed, structure-based methods for the prediction of peptide–MHC
binding are still in their infancy. Therefore, in thischapter, we described a
method for defining HLA supertypes based on the analysis and subsequent
clustering of their predicted peptide-binding repertoires. Furthermore, we have
shown that the method can identify experimentally defined HLA I supertypes,
suggesting in addition new potential relationships between the peptide-binding
specificity of HLA I molecules. When the predictor of peptide–MHC binding is
a specificity matrix such as a PSSM, clustering of the HLA molecules according
to peptide-binding specificity may alternatively be achieved by comparison of
the matrix coefficients (21). However, it is important to stress that the clustering
method described here to derive supertypes can be applied in combination with
any predictor of peptide–MHC binding. Although, not indicated in this chapter,
minor differences in the defined supertypes appear depending on the phylo-
genic algorithm used to cluster the HLA I molecules. There are also two other
limitations to the method described here. First, the method is limited by both
the quality and availability of the peptide–MHC binding predictors. Thus, we
do not discard the possibility that the fine structure of the supertypes may suffer
some changes as new and better predictors of peptide–MHC binding develop.
The second limitation is that we have considered the size of the peptide-binding
repertoire of all MHC molecules to be the same. However, that might not
always be the case. Indeed, it has been noted that, for instance, the A∗0201
appears to be quite promiscuous, binding larger sets of peptides than the other
HLA I molecules (Azouz, Reinhold, and Reinherz, unpublished results).
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